of Technology Lecturer : Piotr Indyk 6 . 895 : Sketching , Streaming and Sub - linear Space Algorithms
نویسندگان
چکیده
consider the case where x is has exactly k + 1 nonzero entries. Then, Errk(x) = Err 2 k(x) = x (k+1), where x(k+1) represents the smallest of the k + 1 nonzero entries in x. Thus, the formula above implies that for such x, the LP finds an x∗ that is better than the best k-sparse approximation, so clearly x∗ cannot be k-sparse. In practice, it is often not important that x∗ be k-sparse. For example, in image processing, it may not be important that our reconstruction have exactly k non-zero frequency components, so reconstructing x to x∗ may be fine. However, if we do want to construct a k-sparse approximation x̃ to x, a simple application of the triangle inequality shows that setting x̃ to be the optimal k-sparse approximation1 to x∗ produces a good k-sparse approximation to x. Formally, let x′ denote the optimal k-sparse approximation to x. Then,
منابع مشابه
Massachusetts Institute of Technology Lecturer : Piotr Indyk 6 . 895 : Sketching , Streaming and Sub - linear Space Algorithms
In previous lectures, we have seen streaming algorithms that operate a number of different data types, including numerical, metric, and geometric. Today we will investigate streaming algorithms on graphs. Our model for graph data will be as follows. Given a graph G = (V,E) with |V | = n, we will assume that V is known, and that the edges in E are revealed in arbitrary order (deletions are not s...
متن کاملPiotr Indyk 6 . 895 : Sketching , Streaming and Sub - linear Space Algorithms
The topic of this class is computation over data streams, and its various manifestations. A data stream is a sequence of data elements (numbers, geometric points, etc), which is much larger than the amount of available memory. The goal is to compute (perhaps approximately) some function of the data using only one pass1 over the data stream. The difficulty in designing data stream algorithms com...
متن کاملSketching and Streaming High-Dimensional Vectors
A sketch of a dataset is a small-space data structure supporting some prespecified set of queries (and possibly updates) while consuming space substantially sublinear in the space required to actually store all the data. Furthermore, it is often desirable, or required by the application, that the sketch itself be computable by a small-space algorithm given just one pass over the data, a so-call...
متن کاملAdvances in Sparse Signal Recovery Methods
The general problem of obtaining a useful succinct representation (sketch) of some piece of data is ubiquitous; it has applications in signal acquisition, data compression, sub-linear space algorithms, etc. In this thesis we focus on sparse recovery, where the goal is to recover sparse vectors exactly, and to approximately recover nearly-sparse vectors. More precisely, from the short representa...
متن کاملof Technology Lecturer : Piotr Indyk
The goal is to acquire signals in R that are well approximated by sparse signals with k nonzero components, where k << n. The measurement process can be represented by an m× n matrix A, where m is roughly proportional to k rather than n. The recovery algorithm uses the sketch and a description of the measurement matrix to construct a signal approximation x̂ that has only O(k) nonzero components....
متن کامل